Pertidaksamaan Kuadrat-Linear dan Kuadrat-kuadrat
Sebelum membahas sistem pertidaksamaan, akan dibahas terlebih dahulu secara tersendiri pertidaksamaan linier dan pertidaksamaan kuadrat dua variabel.
Pertidaksamaan linier dua variabel yaitu suatu pertidaksamaan yang memuat dua variabel dengan pangkat tertinggi satu.
Penyelesaian dari pertidaksamaa linier dua variabel ini merupakan gambar daerah pada grafik Catesius (sumbu-XY) yang dibatasi oleh suatu garis linier.
Gambarlah daerah penyelesaian pertidaksamaan linier y ≤ –2x + 6, dengan x dan y anggota real.
Jawab:
Jika kedua titik yang diketahui berada pada sumbu-X dan sumbu-Y, maka persamaan liniernya ditentukan dengan rumus:
Pertidaksamaan linier dua variabel yaitu suatu pertidaksamaan yang memuat dua variabel dengan pangkat tertinggi satu.
Penyelesaian dari pertidaksamaa linier dua variabel ini merupakan gambar daerah pada grafik Catesius (sumbu-XY) yang dibatasi oleh suatu garis linier.
Untuk lebih jelasnya ikutilah contoh soal berikut ini :
Gambarlah daerah penyelesaian pertidaksamaan linier y ≤ –2x + 6, dengan x dan y anggota real.
Jawab:
Apabila daerah penyelesaian pertidaksamaan linier diketahui dan garis batasnya melalui dua titik tertentu, maka pertidaksamaan liniernya dapat ditentukan.
Jika kedua titik yang diketahui berada pada sumbu-X dan sumbu-Y, maka persamaan liniernya ditentukan dengan rumus:
Sedangkan pertidaksamaan kuadrat dua variabel (x dan y) merupakan suatu pertidaksamaan dengan variabel x memiliki pangkat tertinggi dua
Secara umum bentuk fungsi kuadrat adalah y = ax2 + bx + c dan grafiknya berbentuk parabola. Untuk menggambar grafiknya, diperlukan langkah-langkah tersendiri, yakni :
(1) Menentukan titik potong dengan sumbu x , syaratnya y = 0
(2) Menentukan titik potong dengan sumbu y, syaratnya x = 0
(3) Menentukan titik maksimum/minimum fungsi, yaitu:
Secara umum bentuk fungsi kuadrat adalah y = ax2 + bx + c dan grafiknya berbentuk parabola. Untuk menggambar grafiknya, diperlukan langkah-langkah tersendiri, yakni :
(1) Menentukan titik potong dengan sumbu x , syaratnya y = 0
(2) Menentukan titik potong dengan sumbu y, syaratnya x = 0
(3) Menentukan titik maksimum/minimum fungsi, yaitu:
Untuk lebih jelasnya, ikutilah contoh soal berikut ini:
Komentar
Posting Komentar