LUAS SEGI-N BERATURAN, JARI-JARI LINGKARAN LUAR DAN LINGKARAN DALAM SEGITIGA, GARIS SINGGUNG PERSEKUTUAN LUAR/DALAM LINGKARAN

Segi-n beraturan yaitu bangun datar atau bentuk dimensi 2 yang terdiri dari garis-garis bersambungan membentuk bangun tertutup dengan  sisi yang sama panjang dan  sudut yang sama besar. 

Jumlah besar sudut dalam segi-n beraturan dapat ditentukan dengan rumus:

Jumlah besar sudut dalam  segi-n : (n-2) x 180° 

contoh :

- Jumlah besar sudut dalam segitiga  = (3-2) x 180°= 180°

Jumlah besar sudut dalam segiempat  =(4-2) x 180°=36

Jumlah besar sudut dalam segilima      =(5-2) x 180°=54

Jumlah besar setiap sudut segi-n beraturan dapat ditentukan dengan rumus:

Jumlah besar setiap sudut segi-n : (n-2) x 180° 

contoh :
- Jumlah besar setiap sudut segitiga 
  = (3-2) x 180° = 60°
                                                                           - Jumlah besar setiap sudut  segiempat  
=  (4-2) x 180° = 90°
                                                                          - Jumlah besar setiap sudut segilima     
 = (5-2) x 180° = 108°

Menghitung luas segi-n beraturan

Karena segi-n beraturan terdiridari n buah segitiga yang kongruen, maka luas segi-n adalah n kali luas segitiga dalam tersebut. 

Jika diketahui panjang jari-jari lingkaran dalam :

Luas segi-n : n x ½ x r²x Sin α


Jika diketahui panjang sisi segi-n :

Luas segi-n : n x s²x Sin²β 
                           2 x Sin α

Jari-Jari Lingkaran Dalam Segitiga


Perhatikan gambar di atas, jari-jari lingkarang yang akan kita cari adalah OE = OF = OD. Ketiganya sama dengan tinggi dari segitiga 1, 2 da 3.

Luas Segitiga Besar = Luas ΔI + Luas ΔII + Luas ΔIII

——————-  = 1/2 (AB x OD) + 1/2 ( CB x OE) + 1/2 (AC x OF)

——————-  = 1/2 (AB x r) + 1/2 (CB x r) + 1/2 (AC x r)

——————-  = 1/2 r (AB + CB + C)

——————-  = 1/2. r. Keliling Segitiga (setengah keliling bisa dilambangkan dengan s?)

——————-  = r. S

Jadi

L = r . S

r = L/S

jadi, jari-jari lingkaran dalam dapat dicari dengan membagi luas segitiga dengan 1/2 kelilingnya. Sekarang yang menjadi masalah adalah bagaimana mencari luas segitiganya? Karena segitiga di atas adalah segitiga sembarang sobat bisa menggunakan rumus
luas segitiga sembarang

Jadi rumus jari-jari lingkaran dalam menjadi:

rumus lingkaran dalam segitiga

dengan
L = Luas Segitiga
S = 1/2 keliling Δ = 1/2 (a+b+c)


Jari-Jari Lingkaran Luar Segitiga

Pada gambar diatas, terdapat sebuah segitiga ABC dengan dengan sisi a,b, dan c. Ada lingkaran luar yang berpusat di titik O yang mengitari segitiga tersebut. OA, OB, OC. dan OD masing-masing adalah jari-jari lingkaran luar yang akan kita cari rumusnya. Untuk membantu menemukan rumus jari-jari, kita memakai garis bantu yaitu garis tinggi segitiga CT dan garis diameter yang ditarik dari titik C (garis CD).

Coba perhatikan ΔCAD dengan ΔCTB

∠CAD = ∠CTB = 90o (ingat sifat sudut keliling yang menghadap diameter sama dengan 90º)

∠ADC = ∠TBC (ingat bahwa dua sudut keliling yang menghadap busur lingkaran yang sama adalah sama besar)

Karena ada dua pasang sudut yang sama maka bisa disimpulkan bahwa ΔCAD dan ΔCTB sebagung (kongruen). Karena sebangun maka perbandingan sisi-sisinya akan sama.

BC/CD = CT/AC
CD (diameter) = BC x AC / CT
CD (diameter) = a x b / CT……. (persamaan 1)

Nilai CT bisa kita cari dengan persamaan Luas

Luas ΔABC = 1/2 AB x CT
2 Luas ΔABC = AB x CT
CT = 2 Luas ΔABC / AB
CT = 2L/ c……..(persamaan 2)

Kita masukkan persamaan 2 ke persamaan 1

CD = a x b / CT
CD = a x b / (2L/c)
CD = a x b x c / 2L

Jari-jari = 1/2 CD
r = 1/2 CD = a x b x c / 4L

rumus jari jari lingkaran luar

a,b,dan c = sisi-sisi segitiga
L = luas segitiga


Garis Singgung Persekutuan Luar Dua Lingkaran

Garis AB adalah garis singgung persekutuan luar dua lingkaran. Konsep untuk mengetahui panjang garis singgung persekutuan luar dua lingkaran adalah teorema pythagoras. Langkah pertama adalah proyeksikan titik P ke garis OA. Panjang garis PP’ sama dengan garis AB, sehingga dengan menghitung panjang PP’ maka kita juga akan mendapatkan panjang AB (garis singgung persekutuan dua lingkaran).

Perhatikan bahwa segitiga PP’O merupakan segitiga siku-siku yang siku-siku di P’. Dengan teorema phytagoras dapat diperoleh panjang PP’ yaitu sebagai berikut.

  \[ PP' = \sqrt{OP^{2}-\left( OP'\right)^{2}} \]

Karena OP' = OA - BP = R - r maka,

  \[ PP' = \sqrt{OP^{2} - \left( R - r\right)^{2}} \]

Sehingga, rumus garis singgung persekutuan luar dua llingkaran dapat dinyatakan dalam rumus di bawah.

Rumus mencari panjang garis singgung persekutuan luar dua lingkaran:

  \[ AB = PP' = \sqrt{OP^{2}-(R-r)^{2}} \]

Keterangan:
        AB = PP’ = Garis singgung persekutuan luar lingkaran
        OP = Jarak antara kedua pusat lingkaran
        R = Jari-jari lingkaran besar
        r = jari-jari lingkaran kecil


Garis Singgung Persekutuan Dalam Dua Lingkaran

Sama halnya dengan garis singgung persekutuan dalam, garis singgung persekutuan luar juga didapat dengan menerapkan konsep teorema phytagoras.

Perhatikan bahwa segitiga PP’O merupakan segitiga siku-siku yang siku-siku di P’. Dengan teorema phytagoras dapat diperoleh panjang PP’ yaitu sebagai berikut.

  \[ PP' = \sqrt{OP^{2}-\left( OP'\right)^{2}} \]

Karena OP' = OA + BP = R + r maka,

  \[ PP' = \sqrt{OP^{2} - \left( R + r\right)^{2}} \]

 

Sehingga, rumus garis singgung persekutuan dalam dua llingkaran dapat dinyatakan dalam rumus di bawah.

Rumus mencari panjang garis singgung persekutuan dalam

  \[ AB = PP' = \sqrt{OP^{2} - (R + r)^{2}} \]

Keterangan:
        AB = PP’ = Garis singgung persekutuan luar lingkaran
        OP = Jarak antara kedua pusat lingkaran
        R = Jari-jari lingkaran besar
        r = jari-jari lingkaran kecil


Contoh Soal dan Pembahasan

1. Dua buah lingkaran memiliki panjang garis singgung persekutuan luar 24 cm dan jarak kedua titik pusat lingkaran 26 cm. Jika panjang jari-jari lingkaran besar 18 cm, maka panjang jari-jari lingkaran yang lain adalah ….
A.     6 cm
B.     8 cm
C.     9 cm
D.     10 cm
 
Pembahasan:
Berdasarkan data pada soal, kita dapat peroleh gambar di bawah.

Jadi, panjang jari-jari lingkaran yang lain adalah 8 cm.
Jawaban: D

Komentar

Postingan populer dari blog ini

Pertidaksamaan Kuadrat-Linear dan Kuadrat-kuadrat

FUNGSI TRIGONOMETRI DAN BEBERAPA CONTOH SOALNYA

SUDUT-SUDUT BERELASI